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AbslrncL Minimum uncerlainty mherent slates and annihilation operator coherent slates 
for the Morse millator are derived and shown lo be equivalent. They reduce, in the 
limit of small anharmonicity anstant, or, equivalently, in the limit of large well depth, 
to the approximate mherent stales d e ~ e d  prevbusly from the use of a generalized 
displacement operator. 

1. Introduction 

Anharmonic potentials, particularly the Morse potential (Morse 1929), have been 
used widely to describe chemical bonds, since they take into account both the quasi- 
harmonic behaviour of the bond in the vicinity of the potential minimum and the 
ability of the bond to undergo dissociation at high excitation energies. Studies of 
such anharmonic potential systems are of interest in respect of the interaction of 
high-frequency radiation with chemical bonds, and, by analogy with the case of har- 
monic potentials, this requires a knowledge of the so-called coherent states of the 
anharmonic potential. 

Harmonic oscillator coherent states have been widely studied (Louise11 1973) and 
have the interesting property that they correspond to those states which (i) minimize 
the uncertainty relation; (U) are eigenstates of the annihilation operator; and (iii) 
arise from the operation of a unitary displacement operator to the groundstate 
wavefunction of the harmonic oscillator. The term coherent reflects the fact that 
such states evolve coherently in time, remaining localized around the corresponding 
classical trajectory. (For a recent comprehensive review of coherent states, from the 
point of view of their topological and algebraic structure, see Zhang ef al 1990.) 

Following a detailed numerical study of the comparison of the response of har- 
monic and anharmonic potentials to intense electromagnetic radiation (Walker and 
Preston 1977), considerable interest has been shown in the construction of coherent 
states for general anharmonic potentials, particularly the Morse potential (Nieto and 
Simmons 1979a,b, Levine 1982, 1985, Gerry 1986, Kais and Levine 19%). General- 
ized coherent states for the Morse potential have been generated by WO independent 
procedures. One method, proposed by Nieto and Simmons (1979a), involves a trans- 
formation to new position and momentum variables chosen in such a way that the 
resultant Hamiltonian most closely resembles that for an harmonic oscillator. The 
coherent states are then obtained by determining those states which minimize the 
generalized uncertainty relation in the new variables, subject to the constraint that 
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the ground state, itself a minimum uncertainty state, be included in the set. The 
resultant approximate coherent states remained coherent only in the limit of large 
well depth. 

An alternative approach to the construction of generalized coherent states is 
associated with irreducible representations of a Lie group which provides a spectrum 
generating algebra (Perelomov 1972, 1986). Such generalized coherent states for the 
Morse oscillator have been obtained (Levine 1982, 1985) using an algebraic approach 
based on a representation of the Morse Hamiltonian in quadratic form using non- 
commuting operators. The resultant approximate coherent states are also valid in the 
limit of large well depth. They have been related (Kais and Levine 1993) to those of 
Nieto and Simmons (1979a), and shown to reduce to the harmonic ascillator coherent 
states in the appropriate harmonic Limit. 

It has been demonstrated recently (Cooper 1987) that the Morse oscillator prob- 
lem can be formulated in a manner similar to that of the harmonic oscillator, through 
the inclusion of an appropriate anharmonicity constant. The perturbational expansion 
of the Morse Hamiltonian in powers of the cnordinate is known to yield the exact 
energy eigenvalue spectrum in second order. This result is a consequence of the fact 
that the square root of the anharmonicity constant Serves as a natural perturbational 
parameter, and the exact bound state eigenvalue spectrum includes this parameter to 
p e r s  no higher than the second. 

The object of the present analysis is to apply this formulation of the Morse 
Hamiltonian to the determination of Morse oscillator coherent states, where the 
harmonic limit can be invoked by putting the anharmonicity constant equal to zero. 
By working with reduced variables, the close connection between the anharmonic and 
harmonic potentials is emphasized at each stage. Exact coherent stat= for the Morse 
oscillator problem are derived, which are not only minimum uncertainty coherent 
states but are also eigenstates of the annihilation operator for the ground state of 
the Morse ascillator. The relation between such states and previously determined 
approximate coherent states is discussed. 

The plan of the paper is as follows. Following a review of the formulation 
of the Morse oscillator problem in a manner which highlights its relation to the 
harmonic oscillator problem, section 3 contains a derivation of the Morse coherent 
states, and relates them to previously determined approximate coherent states for 
the Morse oscillator. In order to assist comparison between the anharmonic and 
harmonic systems, an appendix summarizes the relevant results for coherent States of 
the harmonic oscillator. The paper ends with some concluding remarks. 

2. Algebraic formulation of the Morse oscillator problem 

The Hamiltonian operator for the one-dimensional Morse oscillator is 

where D, represents the depth of the potential well and a is the range parameter. 
Ttansforming to the dimensionless coordinate q defined by 
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where the vibrational frequency we is defined by 

W ,  = ( 2 D , / m ) 1 ' 2 a  (3) 

we have 

where the anharmonicity constant z, is defined by 

x, = hwe/4D,. (5) 

it has been shown (cooper 1987) that Jj"; forms a natural perturbational parameter 
for the Morse cscillator problem. Note that the harmonic limit is regained as z, - 0, 
when H ,  reduces to the harmonic oscillator Hamiltonian H a ,  given by 

2 = 2 1 (--@ d2 + 4 2 )  . 

In order to relate to the operator (or algebraic) formulation of the simple har- 
monic oscillator, we express the Hamiltonian for the Morse oscillator in factorized 
form through the introduction of appropriate annihilation and creation operators such 
that (in units of hw, ) 

A ' A ~ u )  = AE,, lu)  (7) 

where the energy zero is chosen as the ground vibrational level and the annihilation 
and creation operators for the Morse oscillator are defined as follows: 

The annihilation operator A has been chosen so that it annihilates the ground state, 
nameiy 

AIO) 0 .  (10) 

The energy eigenvalues of bound states of the Morse oscillator Hamiltonian (in units 
of hw,) are given by 

(11) 
1 2  E" = ( U +  ;, - ( U +  7) 2, 

so that 

AE,, = E,  - E,  = U( 1 - (U + l)xe). (12) 
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It is a straightfonvard matter to demonstrate that these relations reduce to those 
for the harmonic oscillator (as summarized in the appendix) in the limit ze -+ 0. 
Note that the energy eigenvalues include the parameter 6 only as its square, 
and this is reflected in the perturbational expansion which yields the correct energy 
eigenvalues at second order (Cooper 1987) in a perturbational expansion using 6 
as perturbational parameter. 

for the Morse oscillator is obtained by solving 
equation (lo), expressed in the form 

The ground-state eigenfunction 

In the limit I, + 0, this reduces (to within a multiplicative constant) to the ground- 
"."*" ,.* +La L..-...̂":̂ ,."":lln.̂ r : - 
DULL" "~""L"L.LL,".I "1 L..L ,Ia,,IIYII.C C U L . I I a L " I )  ..I. 

Hence the Morse oscillator problem has been formulated algebraically in a manner 
which closely resembles that of the harmonic oscillator, and to which it reduces in the 
iimii of zero anharmonicity constant. Tnis provides us wiiii a suiiabie siahng point 
for consideration of coherent states for the Morse oscillator. 

3. Morse oscillator coherent states 

ine formuiation of the Morse osciiiator probiem outiined in section 2 may be used 
to determine coherent states of the Morse oscillator using methods which have been 
previously applied in the case of the harmonic oscillator (Carruthers and Nieto 1965). 
Of the three approaches which have been applied in the harmonic oscillator case, 
namely the construction of states which minimize the uncertainty relation, which are 
eigenvalues of the annihilation operator and which are generated by action of a 
unitary uopracawxii uprdiur, uiiiy LLIC II IX LWU a n  uc appcu uuc.;cuy LU LIE IVIVIJC 

oscillator since the h a 1  method relies on a form for the displacement operator which 
is specific to the harmonic oscillator. The results of the present analysis will also be 
compared with those generated by the group theoretical approach to coherent States 
(Perelomov 1972, 1986). 

3.1. Minimum uncertainly coherent states 

Given two Hermitian operators X and P, which obey the relation [ X ,  P] = iC, 
where (C) > 0, states +cs which minimize the generalized uncertainty relation 

- 

..-: .--. A?^-1 -----.-- ^ _ I _ _  .Le c-. -..- _ _  L^ ......,:..A _I: _^^.I.. *^ .L̂  *a,.-- 
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are solutions of the equation (Nieto and Simmons 1979b) 

where (AX)2 = ( X ' )  - (X) ' ,  etc. The uncertainty relation, equation (16), reduces 
uw nuuiucI UL mucpenuenr parameters -by me, aiid moiiier may tie dimhaid ky 
requiring that the ground state be included in the set. The remaining two parameters 
can then be incorporated into a complex number a. 

For the Morse oscillator, it is convenient to chwse X = Q and P = -id/dq, 
so that we have 

.L- L^_ _I :__I _ _ ^ _  >.-. 

where X is defined in such a way that the ground state +o is contained in the set. 
The coordinate Q is defined by 

which is, to within a constant, the so-called Morse coordinate (1 - e - G q ) / & .  
The solution of equation (18) is 

For A = 1, we have 

showing that the ground state io is included as the special case a = 0. 
Since, from equation ( S ) ,  

A (Q + $) Jz 
then, using equation (16) with X = 1, 

Hence the minimum uncertainty mherent states for the Morse oscillator are also 
eigenstates of the annihilation operator. 

We can confirm that these states are indeed minimum uncertainty states by proving 
that 

(AQ)'(AP)' = (@/4 (23) 
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Rom the definition of Q, we have 

[Q ,p ]  = ie-Kq 

so that, in this case, 

G = e - m q  = [ A , A t ] =  l - z , - & ( A + A t ) .  

Hence, since la) is an eigenstate of the operator A with eigenvalue a / a ,  

--I -1 
( p )  = - ( A  - A’) = -(a - a’) Jz 4 
( Q  2 ) - 1  - ?(a + a*) + 411 - ze - G ( a  + a’)] 

( p ’ ) =  i ( a - a * ) - $ [ 1 - 2 , -  J- 2 , / 2 ( a + a * ) ] .  

Then 

( A Q ) ~  E ( Q ~ )  - ( Q ) ~  = 4ri - I, - Gca + a * ) l  

(Ap)’ E ( p 2 )  - ( P ) ~  = $[ l  - I, - G ( a  + a’) ] .  

Equation (23) is immediately seen to be valid since 

(AQ)’(Ap)’ = : [ I  - ze - \/2,/2(a + a*)I2 E (C)’/4 

where we have used equation (25) to evaluate G. 

3.2. Approximate Morse oscillator coherent states 

(24) 

Approximate coherent states for the Morse axillator have been generated by Nieto 
and Simmons (1979a) and by Ibis and Levine (1990). The former express the Morse 
Hamiltonian in terms of transformed position and momentum variables which allow 
the Morse oscillator to resemble an harmonic oscillator, whereas the latter use the 
Perelomov (1972, 1986) definition of generalized coherent states within a group theo- 
retical framework. In both cases the results, which are essentially equivalent (Kais and 
Levine 1990), are valid in the Limit of a deep potential well. This corresponds in the 
present formulation to small values of the anharmonicity constant. These states were 
constructed in such a way that they would maximize their coherence as a function of 
time, at least for the low-lying states. 

Since the minimum coherent states are given by equation (Zl) ,  such that 

= efiaqtLo (33) 
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we can try to reexpress this result in an approximate form which is valid in the limit 
of small values of the anharmonicity constant. 

Since 

in the limit of small xe. Dropping the constant term, which can be incorporated into 
the normalization constant, we find 

(36) 

'Ihis is to be compared with the approximate result of Nieto and Simmons (1979) 
snrl Yo& snrl I a,:nn flo(y1\ :n thn fnrm 
"1." .-a., U.." -,".U \A,,",, "I LLL.. L" ..,I 

(37) 
~ e-(A-l/2)ze-ce-' 

*cs - 

where C is a complex number, z 3 &q and X 
be equivalent with the identification C = 1 + 2 6 a .  
analogous to equation (All), would be 

1/22,. The results are seen to 

Since Q = ( A  + At)/& it is proposed that a corresponding operator relation, 

10) = e-(A+A')lo) (38) 

anly !!~~-mmm~tativle, but a!= the "mutatcm of a and a+ with !.4,.4t] B R  

where the operators and states refer to the Morse oscillator rather than to the 
harmonic oscillator. However, there is a complication since A and At are not 

themselves noncommuting. This prevents the use of the Baker-Campbell-Hausdoff 
(BCH) identity in its usual form. 

However, we can derive a related relationship, hy exploiting the fact that the sum 
( A  + At) does commute with the commutator [A, At] (cf equation (25)). We shall 
use a variant of the proof of the original BCH theorem given in Liouisell. 

Let 

f ( a )  = e-Ate"A 

Then 
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Hence 

We can integrate this equation since (A t  -+ A)  commutes with [At ,A] ,  to yield 

f(a) = exp(a(At t A)  t h ( a ) [ A t , A l )  

h ( a )  = / g ( a ) d a  = a2/2 t a3f ie /6  t ... 

where 

Since 

[ A t , A ]  = -(1 - z,) + & ( A t  At) 

we have 
e ( a + 4 Z s h ( o ) ) ( A t t A )  = e h ( a ) ( l - 4 e a A i e * A .  

Hence 

e(a+f ieh(a) ) (At tA) (0)  = eh(o)( l -s4eaAt(0),  (39) 

&%t+o) 10) = ea2/Zeaaieoa 10) = &/zea" 

In the harmonic limit, I< - 0, this gives the corresponding relation 

10) (40) 

which is the harmonic oscillator result, equation (A14). (Note that A - a and 

We now consider the effect of the aMihilatiOn operator A for the Morse oscillator 
A! 4 n! &? t:i tGis(jz:c 

on the approximate coherent state defined by equation (36). Since 

approximate coherent state is oniy an eigenstate oi the annihiiition operator A 
when a = 0 and in the harmonic limit when I, - 0. 

The approximate coherent state was defined in such a way that it would retain its 
coherence in time as far as possible, whereas this is not the case with the minimum 
uncertainty coherent states. It b worth noting, however, that these latter states, 
defined by equation (33), do reduce to the harmonic oscillator coherent states, defined 
by equation (AlO), in the limit zs -+ 0, when the ground state of the Morse oscillator 
reduces to that of the harmonic oscillator. Tbese harmonic oscillator coherent states 
do retain their coherence as a function of time, so the minimum uncertainty coherent 
states for the Morse oscillator should retain to some extent their coherence in time, 
particularly for low-lying states in the limit of large well depth. 
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3.3. Dirplacement operator coherent states 

As noted by Nieto and Simmons (1979b), displacement operator coherent states are 
not necessarily the same as minimum uncertainty coherent states in the case of general 
potentials. The displacement operator D(u) given by 

(43) 7-Ol*a D( a) = e"' 

is appropriate for the harmonic oscillator, where, as shown in the appendix, 

la) = D(a)lO) 

in the harmonic case. 

D(a) on IO), but, since 
In the Morse oscillator case, we are still free to consider the effect of the operator 

[aAt - a*A,  [ A ,  A']] # 0 
we cannot determine its effect by use of the simple operator treatment discussed 
earlier. However, we note that if a is chosen to be purely imaginary, then 

D ( ~ )  E . - . (A~+A)  (44) 
which is precisely the operator relation proposed earlier for approximate coherent 
states. 

In these approximate coherent state formulae, we need to operate with powers of 
At on the ground state of the Morse oscillator. It is a simple matter to show that 

Atlo) = f i Q l 0 )  (45) 

U t l O )  = f i P l 0 )  

whereas, in the harmonic limit, 

which corresponds to the first excited vibrational state of the harmonic oscillator, in 
accord with the harmonic oscillator relation utlO) = 11). Note that the effect of A' 
oii -Go .& a eGac~Gii .*hick & an of :he ?"Toy& &llatoi, 
although it correctly reduces to an eigenstate of the harmonic oscillator in the limit 
ze - 0. 

Using the methods of supersymmetric quantum mechanics, it can be shown 
(Cooper, in preparation) that the set of ground states of :he Morse potential and 
its various supersymmetric partner potentials are eigenstates of the annihilation op- 
erator mrresponding to real eigenvalues such that 

AlO(n)) = n&lO(n)) (46) 

IO( n)) = e " G q  10) (47) 

where 

._...._._ a. _ _  .L^ ---..._I - .~-~ _I .LA .L ^L:C.^A n I^_^^ --.--.:..I wrrwpunus tu m e  gruurru sidic UL LIIC riui MIULCU iwuix. ~ L C I I L I ~ .  

These partner potentials each have the same energy spectrum except that there is 
one less bound state as one progresses along the series. The effect of the operator At 
on any ground state is to generate the first excited state of a shifted Morse potential 
with an additional bound state, there being no change in energy. 
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3.4. Linearly forced Morse oscillator 

The linearly forced harmonic oscillator provided an early illustration of the use of 
the coherent state concept (Carruthers and Nieto 1965). The linearly forced Morse 
oscillator has been the subject of considerable interest, both numericaliy (Walker and 
Preston 1977) and analytically (Nieto and S i m o n s  1979a, Levine 1982,1985). 

The coherent states of the harmonic oscillator remain coherent for unperturbed 
and linearly perturbed motion, the latter effect arising from the fact that the Hamil- 
tonian, although quadratic in the annihilation and creation operators, forms a closed 
set with them and the identity operator. This does not occur in the case of the Morse 
oscillator, even though the Hamiltonian retains its quadratic form. Higher terms arise 
in the operation of the Hamiltonian on the annihilation and aeation operators. In 
consequence, dephasing will occur from the initially coherent ground state of the 
Morse oscillator. This effect has been demonstrated most effectively in the numerical 
studies of Walker and Preston (1977). 

4. Concluding remarks 

We have demonstated that coherent states for the Morse oscillator may be obtained 
by a simple algebraic procedure which is based on an extension of the well known 
approach used in the case of the harmonic oscillator and is based on a formulation 
of the Morse oscillator problem which involves the explicit introduction of an anhar- 
monicity constant into the Hamiltonian. The resultant states represent both minimum 
uncertainty coherent states and annihilation operator coherent states, where the an- 
nihilation operator is chosen to annihilate the ground state of the Morse oscillator. 
In the limit of small anharmonicity parameter (or, equivalently, in the limit of large 
well depth), the Morse oscillator coherent states have been shown to reduce to the 
approximate coherent states constructed independently via a generalized displace- 
ment operator associated with an appropriate invariance group. However, only in 
this limit of large well depth do the Morse oscillator minimum uncertainty coherent 
states retain approximate coherence as a function of time. 

Appendix. Harmonic oscillator coherent states 

Here? we shall summarize the main results concerning coherent states for the har- 
monic oscillator (see, for example, Nieto and Simmons (1979b)) to assist comparison 
with the corresponding relations for the anharmonic Morse oscillator. The harmonic 
oscillator eigenvalue problem may be expressed in dimensionless variables in the form 

where n = 0 , 1 , 2 , .  . .. This may be written equivalently as the operator equation 

a',(,) = nln) 
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where the annihilation (a) and creation (at) operators are defined by 

such that 

[ a , a t ]  = 1. (W 

Since the operator a annihilates the ground state IO), the ground-state wavefunction +,, satisfies the relation 

(5 + 9) +o = 0 

so that 

('47) +o = e-( 1/2)9' 

to within a constant of normalization. 
Coherent states, which approximate the motion of a classical particle, and so are 

localized, may be defined in a number of ways, all of which are equivalent in the case 
of the harmonic oscillator. 

A.]. Annihilation operalor coherent states 

Eigenstates of the annihilation operator a are 

ala) = ala) 

so that 

The solution of this equation can be written in the form 

0' 
$a = ed509e-(1/2v E 

This result suggests the operational definition 

10) l a )  = ea(a+a') 

S i n c e  

1 
q = -(a + a ' ) .  Jz 
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Using the well known BCH identity (Louisell, 1973), 

.A+B = ,BeAef[A.B1 

for WO Hermitian operators A and B, each of which commute with the commutator 
[A, E ] ,  we have 

la) = ea~'e~~e(~a/z)[a,a'l~o) = eo'/ze=at 10) 6414) 

where we. have used the fact that al0) 

factor, we have 

0. 
Leaving aside the constant term which can be. incorporated into the normalization 

la) = e"(n+*')l~) -eaat  10).  

a'ln) = -In+ 1) 6416) 

(A151 

In order to determine the normalization factor, we use the relation 

and expand the exponential to give 

Sice the eigenstates are orthonormal, we have 

so that normalized coherent states are given by 

l a )  = e-loll/2eaQt 10) 

A.Z. Displacement operator coherent stales 

These states are defined by the operation of the unitary displacement operatot 

Y \ Y ,  nr,\ - -.. ,aat-a.a 

D + ( a ) a D ( a )  = a + a. 

(A21) 

on the ground state IO), where the operator is chosen so that 

( M 2 )  

Note that this particular form of D is specific to the harmonic oscillator problem 
(Nieto and Simmons 1979b). Then 

D ( ~ ) I o )  = 10) = e-lal~/zea,' 10) (-4.23) 

as given in equation (AZO). 
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A.3. Miiimum uncertainly coherent states 

For X = q and P = -id/dq, we have 

with solution 

1c, CII = e -  r ’ l z x e f i m . s l A  (A251 

The ground state is included if X = 1, when equation (U) becomes 

which corresponds to the eigenvalue relation ala) = ala) in k 2 .  
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